
J .  Fluid Mech. (1984), wol. 142, p p .  1-8 

Printed in Great Britain 

1 

Oscillations of a rotating liquid drop 

By F. H. BUSSE 
Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, 

University of California, Los Angeles 

(Received 12 August 1983 and in revised form 9 November 1983) 

The effect of rotation on the frequencies of oscillations of a liquid drop is investigated. 
It is assumed that the drop is imbedded in a fluid of the same or different density 
and that a constant surface tension acts on the interface. Rotation influences the 
oscillations through the Coriolis force and through the centrifugal distortion of the 
drop. For non-axisymmetric oscillations only the Coriolis force is important in first 
approximation and causes the expected splitting of the frequency for the two modes 
differing in their sign of circular polarization with respect to the axis of rotation. I n  
the case of axisymmetric oscillations the centrifugal distortion and the Coriolis force 
combine to increase the frequency whenever the density pi of the drop exceeds the 
density of po of the surrounding fluid. For pi < po a decrease of the frequency of 
oscillation is possible for some modes of higher degree. 

1. Introduction 
The oscillations of a rotating liquid drop represent one of the basic phenomena in 

fluid mechanics which have wide-ranging applications. Rotating as well as non-rotating 
liquid drops with surface tension have been used as models of the atomic nucleus, 
and close analogies can be drawn between the excited states of nuclei and the 
oscillations of liquid drops (Swiatecki 1974). Since surface tension has a similar 
dynamic effect as gravity, rotating drops have been used as simple models of stars, 
and Chandrasekhar (1965) has shown that the equilibrium states of rotating drops 
and their stability properties resemble those of rotating self-gravitating masses. 

The interest in rotating drops has been revived in recent years by the striking drop 
experiments performed in the gravity-free environment of Skylab. Because of their 
large size these drops exhibited surface-tension-induced oscillations with frequencies 
only slightly in excess of their rotation rates. The Coriolis force must thus be taken 
into account in understanding the dynamics of these drops. Experiments in 
Earthbound laboratories are more difficult to  perform since the drop must be 
suspended in a liquid of nearly the same density. For this reason no quantitative data 
on the oscillations of rotating liquid drops are yet available in the literature. Only 
recently have experimental measurements been started (Wang & Trinh 1984), which 
have in part motivated the present study. 

The lack of detailed experimental data on the oscillation frequencies of rotating 
drops may have caused a delay of a general theoretical analysis of the problem. 
Rosenkilde (1967) treats the problem using the method of tensor virials, but he does 
not derive explicit expressions for the frequencies of oscillations. Because of the 
assumption of distortions of the rotating drop in the form of pure Legendre functions, 
an accurate determination of the oscillation frequency cannot be achieved by this 
approach. Recently the finite-amplitude oscillations of a rotating cylindrical drop 
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have been analysed numerically (Benner, Patzen & Scriven 1982). In this paper the 
more restricted goal of the linear theory of oscillations of a nearly spherical rotating 
drop will be pursued. 

Several analytical approaches to the problem of oscillations of a rotating drop 
appear to be possible. The problem can be considered as an extension of the problem 
of inertial oscillations of a rotating spheroidal cavity (Kudlick 1966). By introducing 
surface tension and by allowing for surface distortions, the changes in the frequency 
of inertial modes due to surface-tension effects as well as the effects of rotation on 
the surface-tension modes can be calculated. The difference between the shape of a 
rotating drop and the ellipsoidal figure for which analytical solutions for inertial 
oscillations exist will cause inaccuracies, however, unless the centrifugal force is small 
compared with the surface tension divided by the surface area of the drop. Moreover, 
special difficulties are encountered when the dynamics of the outside medium is taken 
into account. Since Earthbound experiments require suspension of the drop in a fluid 
with closely matched density, the problem of inertial oscillations in the outside 
medium must be considered. No analytical solutions for this problem exist. 

In view of these difficulties, an alternative analytical method is employed in this 
paper. Instead of considering the modifications of inertial oscillations due to 
surface-tension effects, only the influence of the rotation rate 52 on the surface- 
tension-induced oscillations is calculated. By introducing rotation as perturbation 
into the problem, the difficulty caused by inertial oscillations of the outside medium 
can be avoided. Comparison with the recently performed experimental observations 
(Wang & Trinh 1984) indicates that this method of analysis yields results even when 
the rotation rate becomes comparable to the frequency of drop oscillations. But the 
method is not capable of determining the influence of surface tension on inertial 
modes whose frequencies w are restricted to the range -252 < w < 252 (Greenspan 
1968). 

The effect of rotation on non-axisymmetric modes of oscillations is of first order 
in the rotation rate 52 and can easily be calculated since the influence of the centrifugal 
force is negligible. The results are similar to those obtained for the rotational splitting 
of the free oscillations of the Earth obtained by Backus & Gilbert (1961) and Pekeris, 
Alterman & Zarosch (1961). The focus of the present analysis is on the axisymmetric 
modes for which the effects of rotation are of the order Q2 and the centrifugal force 
can no longer be neglected. It is still possible, however, to obtain analytical 
expressions for the change of the frequency of oscillation. Viscous damping is 
neglected since its effects on the frequency w of oscillation is small as long as v/r:  G w ,  
where v is the-kinematic viscosity of the drop and ro is its mean radius (Prosperetti 
1980). It seems possible to calculate the effect of rotation on the decay rate of 
oscillations following the analytical theory developed by Prosperetti in the case of 
the non-rotating drop, but this task will not be attempted in the present paper. 

2. Equilibrium figure of a rotating drop 
The problem of the equilibrium shape of a liquid drop in the state of rigid rotation 

has been treated by a number of authors going back to Poinear6 (1895). A succinct 
treatment of the problem is given in Chandrasekhar’s (1965) paper. Here the problem 
is described only briefly in order to provide a basis for the analysis of oscillations. 

The pressure pi inside a homogeneous rotating drop of density pi is given by 

pi = ph +$pir2( 1 - cos2 8 )  Q2, (2.14 
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while the pressure in the homogeneous outside medium rotating with the same 
angular velocity 8 as the drop obeys the analogous relationship 

po  = p i  +$por2( 1 - cos2 8 )  02. (2 . lb)  

A spherical coordinate system ( r ,  0,$)  has been assumed, with the origin at the centre 
of the drop and with the polar axis in the direction of the axis of rotation. The 
axisymmetric equilibrium shape of the rotating drop is given by 

O =  Fo(r,O) = r3-r~[l-ep2(cos0)+e2 C anP,(cosO)], (2.2) 
n > 2  

where ro  refers to the mean radius of the drop, i.e. the volume of the drop is given 
by Since the shape of the drop is purely spheroidal for small rates of rotation, 
the amplitude E of the Pz component of the Legendre-function expansion in (2.2) has 
been introduced as a parameter of the problem. 

The shape is determined by the static equilibrium condition a t  the interface of the 

(2.3) 
two fluids: 

p i - p o  = TV-n, a t  Fo = 0, 

where T is the surface or interfacial tension and no is the normal unit vector of the 

(2.4) 
surface : 

no = VFo/IVFoJ. 

Evaluation of V-no a t  the interface Fo = 0 yields 

0 ) - ~ ~ ~ ( P ~ ( c o s  0) )2+$~2 -Pz 
(:8 

a, P,(cos 0) + 0 ( c 3 )  
n(n+ 1)-2 

+e2 z 
n > 2  3 

where terms of the order E~ have not been written explicitly. By insertion of (2.5) 
in (2.3), the equilibrium shape can easily be determined up to terms of order e3:  

E = S(pi-po)+$5'2(pi-po)2+.. . ,  a4 = g a l l  other a, = 0, (2.6) 

where S E R2ri/4T. (2.7) 

For the calculations performed in the following only terms of order E will actually 
be needed. 

3. The mathematical problem of small-amplitude oscillations 

in a rotating inviscid incompressible fluid is given by 
The equation for the small deviation p@ of the pressure from its hydrostatic value 

where a time dependence of the form exp {iwt} has been assumed. The unit 'vector k 
points in the direction of the axis of rotation. The velocity field u corresponding to 
@ is given by 

+iwV@-28k x V@-ik(28)2 k*V@/w 
w2 - 482 

V =  (3.2) 

For a derivation of (3.1) and (3.2) see Greenspan (1968). For the problem of linear 
oscillations of the rotating drop, (3.1) must be solved for the dynamic pressures pi@, 
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p0@O inside and outside the interface. For small distortions 5 in the normal direction 
the position of the interface can be described by 

F = Fo-clVFoI = 0. (3.3) 

The condition for the change in pressure across the interface is given by 

pi+pi@’-(p0+po@O) = TV-n a t  F = 0, (3.4) 

where pi, po refer to  the hydrostatic pressure distributions (2.1), and n is given by 
VF/lVFl. The description of the problem is completed by the kinematic relationship 

-iwclVFol+u*VFo = 0. (3.5) 

The problem of oscillations can readily be solved in the non-rotating case SZ = 0. 
Assuming a distortion of the interface given by 

co = 3ri a, ~ ( C O S  0) exp {im$} 1 VF, I -l, 
the condition (3.4) can be written in the form 

(3.6) 

pi@’ 0 -PO@: = rol Tan e ( c o s  0) exp {im$} [n(n+ i ) -2 ]  a t  r = ro. (3.7) 

For simplicity we are neglecting the common factor exp{iwt} in the definition of co, 
Po, O and vo. The r-dependence of co has been chosen such that the distortion does not 
cause a change in the volume of the drop. Since the Laplacian of @: O must vanish, 
the solutions exhibiting the asymmetry of the distortion (3.6) can be written in the 
form 

p , C ( c o s  S) exp (im$}, ( 3 . 8 ~ )  

(3.8b) 

Using vo = iVQo/w0, (3.9) 

we obtain from relationship ( 3 . 5 )  

Condition (3.7) can now be satisfied by the choice 

w; = Tro3(n-l) (n+2)  [f -+- : i l l> 

(3.10) 

(3.1 1 )  

which is the well-known expression for the frequencies of oscillations of a non-rotating 
drop (Lamb 1932, p. 475). 

For non-axisymmetric oscillations the above calculation can easily be extended to 
take into account the Coriolis force to first order in Q. Since the drop shape remains 
spherical to this order and the dynamic pressure @ is still a harmonic function, the 
only change occurs in the relationship between u and @. Instead of (3.9) we obtain 

(3.12) 

Accordingly the relationships (3.10) become dependent on the azimuthal wave- 

- ~ z a ,  = w n+1--2:m)/T;. w (3.13) 
number m :  
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To first approximation in Q the frequencies w" of non-axisymmetric oscillations of a 
rotating drop are thus given by 

(3.14) 

Axisymmetric oscillations depend only on even powers of Q since the term 
proportiontal to Q in (3.2) does not enter the analysis. This property suggests an 
expansion of the solution for axisymmetric oscillations in powers of the parameter 

(3.15) 

The functions with subscript 0 and wo are given by the above expressions (3.8), (3.9) 
and (3.11) with m = 0. In  $4 the problem will be considered to order 7. 

1 
7 = 45221w;: 

@ = [@o+q@l+ ...I exp {iwt}, 

w = wo + 110, + . . . , 
u = [uo+7u ,...I exp {iwt},  

5 = [C0 + 75, + . . .] exp {iwt}. 

4. The effect of rotation on axisymmetric oscillations 
Equations (3.1) and (3.2) yield the following equations to order r :  

V2@, = (k*Vf2QO, (4.1) 

Both equations must be satisfied in the inner as well as in the outer region of the 
problem. The asterisk serves as a reminder that only the meridional component of 
the velocity field is given by (4.2). The relationship (3.5) for the distortion yields 

w1 i a a P,(COS 8) 
- iw, 5, + u;n0 = - u;n0 - &-- Q0 - 

"0 w0a8 38 3r0 

where the parameter < denotes the ratio €17, which to order 7 is given by 

(4.4) 
€ pi-po (n-- l )n(n+I)(n+2) 
7 (n+ l)pi+npo 16 

$-=-= 

The last term on the right-hand side of (4.3) arises because the solution of zeroth order 
in 7 satisfies (3.5) a t  r = ro  instead a t  Fo = 0. Similarly, additional inhomogeneous 
terms are generated when the condition (3.4) for the normal stress is evaluated: 

a . .  

ar 
pi@':-po@~-~~roP,(cos 19)--Q~--po@~]+~a,P,(cos8) r;(1 -cos28)  (p i -po)w;  

T 

ro v 
=-{  C Y , ( v + ~ ) ( v - ~ ) P , , ( ~ o s ~ ) + ~ , ~ F , ( ~ ) } .  (4.5) 

In writing this relationship the definitions 

6, = Yo C yv Pv (cos 81, 
Y 

4 4 a  a 
3 3ae 2a0 

F,(8) E - (n2 + n + 4) P,(cos 8) P,( cos 6) --- P - P, 

( 4 . 6 ~ )  

(4.6b) 

have been introduced. 
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There is no need to solve the problem defined by (4.1)-(4.3) and (4.5) explicitly, 
since w1 is the quantity of primary interest. This quantity is determined by the 
solvability condition for the problem. By multiplying (4.1) in the outside region by 
po@; and in the inside region by PO@;, integrating the equations over the respective 
regions and adding them, we obtain after partial integrations 

poj0&(k-V)'@gd3~+pi ji @;(k.V)2q5;d3~ 

where the surface integral is extended over the surface r = To.  Because of the 
relationships 

(4.8) k*V rnPn = nrn-lPn-l, k.Vr-n-lPn = - (n+ 1) r-n-2Pn+1, 

the left-hand side of (4.7) vanishes. The right-hand side yields an expression for w1 
after the dependence on the functions @;, @; is eliminated. For this purpose we first 
obtain a relationship for Cl from (4.2), (4.3) : 

Only the P,(cos 8)-component of 6, in (4.6) is needed, since a @ $ O / a r  is multiplied by 
@$ O in the surface integral of (4.7). After using (4.3) and the analogous relationship 
of zeroth order for expressing a@' O / a r  in terms of @$ O ,  we thus obtain from (4.7) 

I r 

(4.10) 

The first integral on the right-hand side vanishes identically, and the remaining 
terms yield the following expression for w1 : 

pi + 2p' 2P0 + ' 2 = 7 { n(n + 2) (2n - 1)  (n2 - 1 )  (272 + 3) 6( 2n - 1 )  (2n + 3) 
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I n  obtaining this expression it is convenient to use the formula 

7 

j~P,(cos8)-P,(cos8)-~(cosH)sinBde a a = 3  
P,(cos8) [ P , ( c o s ~ ) ] ~  sinode ae ae 

(4.12) 
- 6(n+ 1 )  n - 

(2n+3)  (2n+ 1 )  (2%- 1 )  ' 

According to (3.15), (4.11) describes the relative change of the frequencies of 
axisymmetric modes due to rotation in first approximation. 

5. Discussion 
In  (4.11) the influence of the rotational distortion of the drop and the effect of the 

Coriolis force can be distinguished by their different dependence on the density 
difference between the drop and the outside fluid. When this difference vanishes, 
pi = po, the drop remains spherical and the increase of the frequency of oscillation 
must be attributed solely to the Coriolis force. As the rate of rotation increases from 
zero, the velocity field changes from a potential flow to a flow with finite vorticity. 
The change in the azimuthal velocity induced by the requirement that  angular 
momentum be conserved during the oscillation provides the additional restoring force 
that is responsible for the increase of the frequency of oscillation. 

When the density of the drop differs from that of the outside fluid, the shape of 
the drop is distorted owing to the centrifugal force into an oblate or prolate spheroid. 
I n  the oblate case, pi > po, a further increase of the frequency of oscillations results 
from the enhanced effect of the centrifugal restoring force. The opposite effect occurs 
for pi < po, and for higher values of n even a decrease of the frequency of oscillations 
with increasing rate of rotation is possible if po/pi is sufficiently large. 

This research has been motivated by the ongoing experiments of E. Trinh and 
T. G. Wang a t  the Je t  Propulsion Laboratory. I am grateful to these colleagues for 
stimulating discussions of the problems of oscillating rotating drops. The work 
reported in this paper was supported in part under contract NAS 7918 of the U.S. 
National Aeronautics and Space Administration. 
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